라벨링 툴 라벨 저장 로직 수정

This commit is contained in:
2026-01-14 17:25:54 +09:00
parent 3bb85b4130
commit adcf8f0a8d
6 changed files with 187 additions and 169 deletions

View File

@@ -4,7 +4,7 @@ import com.kamco.cd.kamcoback.postgres.repository.trainingdata.TrainingDataLabel
import com.kamco.cd.kamcoback.trainingdata.dto.TrainingDataLabelDto;
import com.kamco.cd.kamcoback.trainingdata.dto.TrainingDataLabelDto.DefaultPaging;
import com.kamco.cd.kamcoback.trainingdata.dto.TrainingDataLabelDto.DetailRes;
import com.kamco.cd.kamcoback.trainingdata.dto.TrainingDataLabelDto.GeoFeatureRequest.Properties;
import com.kamco.cd.kamcoback.trainingdata.dto.TrainingDataLabelDto.LabelFeatureRequest.LabelProperties;
import com.kamco.cd.kamcoback.trainingdata.dto.TrainingDataLabelDto.LabelingGeometryInfo;
import com.kamco.cd.kamcoback.trainingdata.dto.TrainingDataLabelDto.LabelingListDto;
import com.kamco.cd.kamcoback.trainingdata.dto.TrainingDataLabelDto.SummaryRes;
@@ -42,7 +42,7 @@ public class TrainingDataLabelCoreService {
}
public void updateLabelingPolygonClass(
Long inferenceGeomUid, Geometry geometry, Properties properties, String status) {
Long inferenceGeomUid, Geometry geometry, LabelProperties properties, String status) {
trainingDataLabelRepository.updateLabelingPolygonClass(
inferenceGeomUid, geometry, properties, status);
}

View File

@@ -3,7 +3,7 @@ package com.kamco.cd.kamcoback.postgres.repository.trainingdata;
import com.kamco.cd.kamcoback.trainingdata.dto.TrainingDataLabelDto;
import com.kamco.cd.kamcoback.trainingdata.dto.TrainingDataLabelDto.DefaultPaging;
import com.kamco.cd.kamcoback.trainingdata.dto.TrainingDataLabelDto.DetailRes;
import com.kamco.cd.kamcoback.trainingdata.dto.TrainingDataLabelDto.GeoFeatureRequest.Properties;
import com.kamco.cd.kamcoback.trainingdata.dto.TrainingDataLabelDto.LabelFeatureRequest.LabelProperties;
import com.kamco.cd.kamcoback.trainingdata.dto.TrainingDataLabelDto.LabelingGeometryInfo;
import com.kamco.cd.kamcoback.trainingdata.dto.TrainingDataLabelDto.LabelingListDto;
import com.kamco.cd.kamcoback.trainingdata.dto.TrainingDataLabelDto.SummaryRes;
@@ -25,7 +25,7 @@ public interface TrainingDataLabelRepositoryCustom {
void updateLabelingSkipState(Long inferenceGeomUid, String status);
void updateLabelingPolygonClass(
Long inferenceGeomUid, Geometry geometry, Properties properties, String status);
Long inferenceGeomUid, Geometry geometry, LabelProperties properties, String status);
SummaryRes getSummary(String userId);

View File

@@ -11,15 +11,16 @@ import com.fasterxml.jackson.databind.ObjectMapper;
import com.kamco.cd.kamcoback.label.dto.LabelAllocateDto.LabelState;
import com.kamco.cd.kamcoback.postgres.entity.LabelingAssignmentEntity;
import com.kamco.cd.kamcoback.postgres.entity.MapSheetAnalDataInferenceGeomEntity;
import com.kamco.cd.kamcoback.postgres.entity.MapSheetLearnDataGeomEntity;
import com.kamco.cd.kamcoback.trainingdata.dto.TrainingDataLabelDto;
import com.kamco.cd.kamcoback.trainingdata.dto.TrainingDataLabelDto.ChangeDetectionInfo;
import com.kamco.cd.kamcoback.trainingdata.dto.TrainingDataLabelDto.ClassificationInfo;
import com.kamco.cd.kamcoback.trainingdata.dto.TrainingDataLabelDto.DefaultPaging;
import com.kamco.cd.kamcoback.trainingdata.dto.TrainingDataLabelDto.DetailRes;
import com.kamco.cd.kamcoback.trainingdata.dto.TrainingDataLabelDto.GeoFeatureRequest.Properties;
import com.kamco.cd.kamcoback.trainingdata.dto.TrainingDataLabelDto.InferenceDataGeometry;
import com.kamco.cd.kamcoback.trainingdata.dto.TrainingDataLabelDto.InferenceDataGeometry.InferenceProperties;
import com.kamco.cd.kamcoback.trainingdata.dto.TrainingDataLabelDto.InspectionResultInfo;
import com.kamco.cd.kamcoback.trainingdata.dto.TrainingDataLabelDto.LabelFeatureRequest.LabelProperties;
import com.kamco.cd.kamcoback.trainingdata.dto.TrainingDataLabelDto.LabelingGeometryInfo;
import com.kamco.cd.kamcoback.trainingdata.dto.TrainingDataLabelDto.LabelingListDto;
import com.kamco.cd.kamcoback.trainingdata.dto.TrainingDataLabelDto.LearnDataGeometry;
@@ -204,7 +205,7 @@ public class TrainingDataLabelRepositoryImpl extends QuerydslRepositorySupport
@Override
public void updateLabelingPolygonClass(
Long inferenceGeomUid, Geometry geometry, Properties properties, String status) {
Long inferenceGeomUid, Geometry geometry, LabelProperties properties, String status) {
// inference_geom 테이블에 상태 업데이트
queryFactory
.update(mapSheetAnalDataInferenceGeomEntity)
@@ -225,28 +226,45 @@ public class TrainingDataLabelRepositoryImpl extends QuerydslRepositorySupport
"MapSheetAnalDataInferenceGeomEntity not found for analUid: ");
}
// learn_data_geom 에 insert
queryFactory
.insert(mapSheetLearnDataGeomEntity)
.columns(
mapSheetLearnDataGeomEntity.geoUid,
mapSheetLearnDataGeomEntity.afterYyyy,
mapSheetLearnDataGeomEntity.beforeYyyy,
mapSheetLearnDataGeomEntity.classAfterCd,
mapSheetLearnDataGeomEntity.classBeforeCd,
mapSheetLearnDataGeomEntity.geom,
mapSheetLearnDataGeomEntity.createdDate,
mapSheetLearnDataGeomEntity.modifiedDate)
.values(
inferenceGeomUid,
entity.getTargetYyyy(),
entity.getCompareYyyy(),
properties.getAfterClass().toLowerCase(),
properties.getBeforeClass().toLowerCase(),
geometry,
ZonedDateTime.now(),
ZonedDateTime.now())
.execute();
MapSheetLearnDataGeomEntity learnEntity =
queryFactory
.selectFrom(mapSheetLearnDataGeomEntity)
.where(mapSheetLearnDataGeomEntity.geoUid.eq(inferenceGeomUid))
.fetchOne();
if (Objects.isNull(learnEntity)) {
// learn_data_geom 에 insert
queryFactory
.insert(mapSheetLearnDataGeomEntity)
.columns(
mapSheetLearnDataGeomEntity.geoUid,
mapSheetLearnDataGeomEntity.afterYyyy,
mapSheetLearnDataGeomEntity.beforeYyyy,
mapSheetLearnDataGeomEntity.classAfterCd,
mapSheetLearnDataGeomEntity.classBeforeCd,
mapSheetLearnDataGeomEntity.geom,
mapSheetLearnDataGeomEntity.createdDate,
mapSheetLearnDataGeomEntity.modifiedDate)
.values(
inferenceGeomUid,
entity.getTargetYyyy(),
entity.getCompareYyyy(),
properties.getAfterClass().toLowerCase(),
properties.getBeforeClass().toLowerCase(),
geometry,
ZonedDateTime.now(),
ZonedDateTime.now())
.execute();
} else {
queryFactory
.update(mapSheetLearnDataGeomEntity)
.set(mapSheetLearnDataGeomEntity.geom, geometry)
.set(mapSheetLearnDataGeomEntity.classAfterCd, properties.getAfterClass().toLowerCase())
.set(mapSheetLearnDataGeomEntity.classBeforeCd, properties.getBeforeClass().toLowerCase())
.set(mapSheetLearnDataGeomEntity.modifiedDate, ZonedDateTime.now())
.where(mapSheetLearnDataGeomEntity.geoUid.eq(inferenceGeomUid))
.execute();
}
}
@Override

View File

@@ -89,7 +89,7 @@ public class TrainingDataLabelApiController {
})
@PostMapping
public ApiResponseDto<ResponseObj> saveLabelingFeature(
@RequestBody TrainingDataLabelDto.GeoFeatureRequest request) {
@RequestBody TrainingDataLabelDto.LabelFeatureRequest request) {
return ApiResponseDto.okObject(trainingDataLabelService.saveLabelingFeature(request));
}
@@ -150,147 +150,147 @@ public class TrainingDataLabelApiController {
description = "1개의 polygon이 저장된 경우 응답 예시",
value =
"""
{
"code": "OK",
"message": null,
"data": {
"assignmentUid": "4f9ebc8b-6635-4177-b42f-7efc9c7b4c02",
"changeDetectionInfo": {
"mapSheetInfo": "NI52-3-13-1",
"detectionYear": "2023-2024",
"beforeClass": {
"classification": "waste",
"probability": 0.95
},
"afterClass": {
"classification": "land",
"probability": 0.98
},
"area": 1250.5,
"detectionAccuracy": 0.96,
"pnu": 1234567890
},
"inspectionResultInfo": {
"verificationResult": "완료",
"inappropriateReason": ""
},
"geom": {
"type": "Feature",
"geometry": {
"type": "Polygon",
"coordinates": [[[126.663, 34.588], [126.662, 34.587], [126.664, 34.589], [126.663, 34.588]]]
},
"properties": {
"beforeClass": "waste",
"afterClass": "land"
}
},
"beforeCogUrl": "https://storage.example.com/cog/2023/NI52-3-13-1.tif",
"afterCogUrl": "https://storage.example.com/cog/2024/NI52-3-13-1.tif",
"mapBox": {
"type": "Polygon",
"coordinates": [[[126.65, 34.58], [126.67, 34.58], [126.67, 34.60], [126.65, 34.60], [126.65, 34.58]]]
},
"learnGeometries": [
{
"type": "Feature",
"geometry": {
"type": "Polygon",
"coordinates": [[[126.663, 34.588], [126.662, 34.587], [126.664, 34.589], [126.663, 34.588]]]
},
"properties": {
"beforeClass": "waste",
"afterClass": "land"
}
}
]
}
{
"code": "OK",
"message": null,
"data": {
"assignmentUid": "4f9ebc8b-6635-4177-b42f-7efc9c7b4c02",
"changeDetectionInfo": {
"mapSheetInfo": "NI52-3-13-1",
"detectionYear": "2023-2024",
"beforeClass": {
"classification": "waste",
"probability": 0.95
},
"afterClass": {
"classification": "land",
"probability": 0.98
},
"area": 1250.5,
"detectionAccuracy": 0.96,
"pnu": 1234567890
},
"inspectionResultInfo": {
"verificationResult": "완료",
"inappropriateReason": ""
},
"geom": {
"type": "Feature",
"geometry": {
"type": "Polygon",
"coordinates": [[[126.663, 34.588], [126.662, 34.587], [126.664, 34.589], [126.663, 34.588]]]
},
"properties": {
"beforeClass": "waste",
"afterClass": "land"
}
},
"beforeCogUrl": "https://storage.example.com/cog/2023/NI52-3-13-1.tif",
"afterCogUrl": "https://storage.example.com/cog/2024/NI52-3-13-1.tif",
"mapBox": {
"type": "Polygon",
"coordinates": [[[126.65, 34.58], [126.67, 34.58], [126.67, 34.60], [126.65, 34.60], [126.65, 34.58]]]
},
"learnGeometries": [
{
"type": "Feature",
"geometry": {
"type": "Polygon",
"coordinates": [[[126.663, 34.588], [126.662, 34.587], [126.664, 34.589], [126.663, 34.588]]]
},
"properties": {
"beforeClass": "waste",
"afterClass": "land"
}
"""),
}
]
}
}
"""),
@io.swagger.v3.oas.annotations.media.ExampleObject(
name = "여러 polygon 조회",
description = "3개의 polygon이 저장된 경우 응답 예시",
value =
"""
{
"code": "OK",
"message": null,
"data": {
"assignmentUid": "4f9ebc8b-6635-4177-b42f-7efc9c7b4c02",
"changeDetectionInfo": {
"mapSheetInfo": "NI52-3-13-1",
"detectionYear": "2023-2024",
"beforeClass": {
"classification": "waste",
"probability": 0.95
},
"afterClass": {
"classification": "land",
"probability": 0.98
},
"area": 1250.5,
"detectionAccuracy": 0.96,
"pnu": 1234567890
},
"inspectionResultInfo": {
"verificationResult": "완료",
"inappropriateReason": ""
},
"geom": {
"type": "Feature",
"geometry": {
"type": "Polygon",
"coordinates": [[[126.663, 34.588], [126.662, 34.587], [126.664, 34.589], [126.663, 34.588]]]
},
"properties": {
"beforeClass": "waste",
"afterClass": "land"
}
},
"beforeCogUrl": "https://storage.example.com/cog/2023/NI52-3-13-1.tif",
"afterCogUrl": "https://storage.example.com/cog/2024/NI52-3-13-1.tif",
"mapBox": {
"type": "Polygon",
"coordinates": [[[126.65, 34.58], [126.67, 34.58], [126.67, 34.60], [126.65, 34.60], [126.65, 34.58]]]
},
"learnGeometries": [
{
"type": "Feature",
"geometry": {
"type": "Polygon",
"coordinates": [[[126.663, 34.588], [126.662, 34.587], [126.664, 34.589], [126.663, 34.588]]]
},
"properties": {
"beforeClass": "waste",
"afterClass": "land"
}
},
{
"type": "Feature",
"geometry": {
"type": "Polygon",
"coordinates": [[[126.665, 34.585], [126.664, 34.584], [126.666, 34.586], [126.665, 34.585]]]
},
"properties": {
"beforeClass": "forest",
"afterClass": "building"
}
},
{
"type": "Feature",
"geometry": {
"type": "Polygon",
"coordinates": [[[126.660, 34.590], [126.659, 34.589], [126.661, 34.591], [126.660, 34.590]]]
},
"properties": {
"beforeClass": "grassland",
"afterClass": "concrete"
}
}
]
}
{
"code": "OK",
"message": null,
"data": {
"assignmentUid": "4f9ebc8b-6635-4177-b42f-7efc9c7b4c02",
"changeDetectionInfo": {
"mapSheetInfo": "NI52-3-13-1",
"detectionYear": "2023-2024",
"beforeClass": {
"classification": "waste",
"probability": 0.95
},
"afterClass": {
"classification": "land",
"probability": 0.98
},
"area": 1250.5,
"detectionAccuracy": 0.96,
"pnu": 1234567890
},
"inspectionResultInfo": {
"verificationResult": "완료",
"inappropriateReason": ""
},
"geom": {
"type": "Feature",
"geometry": {
"type": "Polygon",
"coordinates": [[[126.663, 34.588], [126.662, 34.587], [126.664, 34.589], [126.663, 34.588]]]
},
"properties": {
"beforeClass": "waste",
"afterClass": "land"
}
},
"beforeCogUrl": "https://storage.example.com/cog/2023/NI52-3-13-1.tif",
"afterCogUrl": "https://storage.example.com/cog/2024/NI52-3-13-1.tif",
"mapBox": {
"type": "Polygon",
"coordinates": [[[126.65, 34.58], [126.67, 34.58], [126.67, 34.60], [126.65, 34.60], [126.65, 34.58]]]
},
"learnGeometries": [
{
"type": "Feature",
"geometry": {
"type": "Polygon",
"coordinates": [[[126.663, 34.588], [126.662, 34.587], [126.664, 34.589], [126.663, 34.588]]]
},
"properties": {
"beforeClass": "waste",
"afterClass": "land"
}
""")
},
{
"type": "Feature",
"geometry": {
"type": "Polygon",
"coordinates": [[[126.665, 34.585], [126.664, 34.584], [126.666, 34.586], [126.665, 34.585]]]
},
"properties": {
"beforeClass": "forest",
"afterClass": "building"
}
},
{
"type": "Feature",
"geometry": {
"type": "Polygon",
"coordinates": [[[126.660, 34.590], [126.659, 34.589], [126.661, 34.591], [126.660, 34.590]]]
},
"properties": {
"beforeClass": "grassland",
"afterClass": "concrete"
}
}
]
}
}
""")
})),
@ApiResponse(responseCode = "400", description = "잘못된 요청", content = @Content),
@ApiResponse(responseCode = "404", description = "데이터를 찾을 수 없음", content = @Content),

View File

@@ -96,12 +96,12 @@ public class TrainingDataLabelDto {
}
}
@Schema(name = "GeoFeatureRequest", description = "polygon 저장")
@Schema(name = "LabelFeatureRequest", description = "polygon 저장")
@Getter
@Setter
@NoArgsConstructor
@AllArgsConstructor
public static class GeoFeatureRequest {
public static class LabelFeatureRequest {
@Schema(description = "assignmentUid", example = "4f9ebc8b-6635-4177-b42f-7efc9c7b4c02")
private String assignmentUid;
@@ -148,10 +148,10 @@ public class TrainingDataLabelDto {
""")
private Geometry geometry;
private Properties properties;
private LabelProperties properties;
@Getter
public static class Properties {
public static class LabelProperties {
@Schema(description = "beforeClass", example = "WASTE")
private String beforeClass;

View File

@@ -6,7 +6,7 @@ import com.kamco.cd.kamcoback.postgres.core.TrainingDataLabelCoreService;
import com.kamco.cd.kamcoback.trainingdata.dto.TrainingDataLabelDto;
import com.kamco.cd.kamcoback.trainingdata.dto.TrainingDataLabelDto.DefaultPaging;
import com.kamco.cd.kamcoback.trainingdata.dto.TrainingDataLabelDto.DetailRes;
import com.kamco.cd.kamcoback.trainingdata.dto.TrainingDataLabelDto.GeoFeatureRequest;
import com.kamco.cd.kamcoback.trainingdata.dto.TrainingDataLabelDto.LabelFeatureRequest;
import com.kamco.cd.kamcoback.trainingdata.dto.TrainingDataLabelDto.LabelingGeometryInfo;
import com.kamco.cd.kamcoback.trainingdata.dto.TrainingDataLabelDto.LabelingListDto;
import com.kamco.cd.kamcoback.trainingdata.dto.TrainingDataLabelDto.SummaryRes;
@@ -36,7 +36,7 @@ public class TrainingDataLabelService {
}
@Transactional
public ResponseObj saveLabelingFeature(GeoFeatureRequest request) {
public ResponseObj saveLabelingFeature(LabelFeatureRequest request) {
String status = "";
String assignmentUid = request.getAssignmentUid();
Long inferenceGeomUid =