Merge pull request '[KC-103] 추론 실행 배치 수정' (#229) from feat/infer_dev_260107 into develop
Reviewed-on: https://kamco.gitea.gs.dabeeo.com/dabeeo/kamco-dabeeo-backoffice/pulls/229
This commit is contained in:
@@ -458,5 +458,9 @@ public class InferenceResultDto {
|
||||
private ZonedDateTime modelEndDttm;
|
||||
private Long updateUid;
|
||||
private String runningModelType;
|
||||
private Integer pendingJobs;
|
||||
private Integer runningJobs;
|
||||
private Integer completedJobs;
|
||||
private Integer failedJobs;
|
||||
}
|
||||
}
|
||||
|
||||
@@ -141,6 +141,7 @@ public class InferenceResultService {
|
||||
throw new CustomApiException("NOT_FOUND_COMPARE_YEAR", HttpStatus.NOT_FOUND);
|
||||
}
|
||||
|
||||
// 사용할 영상파일 년도 기록 및 추론에 포함되는지 설정
|
||||
for (MngListDto target : targetList) {
|
||||
for (Map<String, Object> map : totalNumList) {
|
||||
if (target.getMapSheetNum().equals(map.get("mapSheetNum").toString())) {
|
||||
@@ -272,14 +273,14 @@ public class InferenceResultService {
|
||||
throw new CustomApiException("BAD_REQUEST", HttpStatus.BAD_REQUEST);
|
||||
}
|
||||
|
||||
// 1) 요청 로그 (debug 권장)
|
||||
// 1) 요청 로그
|
||||
try {
|
||||
log.debug("Inference request dto={}", objectMapper.writeValueAsString(dto));
|
||||
} catch (JsonProcessingException e) {
|
||||
log.warn("Failed to serialize inference dto", e);
|
||||
}
|
||||
|
||||
// 2) local 환경 임시 처리 (NPE 방어)
|
||||
// 2) local 환경 임시 처리
|
||||
if ("local".equals(profile)) {
|
||||
if (dto.getPred_requests_areas() == null) {
|
||||
throw new IllegalStateException("pred_requests_areas is null");
|
||||
|
||||
@@ -30,6 +30,7 @@ import java.time.ZonedDateTime;
|
||||
import java.util.ArrayList;
|
||||
import java.util.List;
|
||||
import java.util.UUID;
|
||||
import java.util.function.Consumer;
|
||||
import lombok.RequiredArgsConstructor;
|
||||
import lombok.extern.log4j.Log4j2;
|
||||
import org.springframework.dao.DataAccessException;
|
||||
@@ -235,91 +236,95 @@ public class InferenceResultCoreService {
|
||||
.toList();
|
||||
}
|
||||
|
||||
/**
|
||||
* learn 테이블 update
|
||||
*
|
||||
* @param request 추론 실행 정보
|
||||
*/
|
||||
public void update(SaveInferenceAiDto request) {
|
||||
MapSheetLearnEntity entity =
|
||||
mapSheetLearnRepository
|
||||
.getInferenceResultByUuid(request.getUuid())
|
||||
.orElseThrow(() -> new EntityNotFoundException());
|
||||
.orElseThrow(EntityNotFoundException::new);
|
||||
|
||||
// M1/M2/M3 영역 업데이트
|
||||
if (request.getType() != null) {
|
||||
switch (request.getType()) {
|
||||
case "M1" -> {
|
||||
if (request.getBatchId() != null) {
|
||||
entity.setM1ModelBatchId(request.getBatchId());
|
||||
}
|
||||
|
||||
if (request.getModelStartDttm() != null) {
|
||||
entity.setM1ModelStartDttm(request.getModelStartDttm());
|
||||
}
|
||||
|
||||
if (request.getModelEndDttm() != null) {
|
||||
entity.setM1ModelEndDttm(request.getModelEndDttm());
|
||||
}
|
||||
}
|
||||
case "M2" -> {
|
||||
if (request.getBatchId() != null) {
|
||||
entity.setM2ModelBatchId(request.getBatchId());
|
||||
}
|
||||
|
||||
if (request.getModelStartDttm() != null) {
|
||||
entity.setM2ModelStartDttm(request.getModelStartDttm());
|
||||
}
|
||||
|
||||
if (request.getModelEndDttm() != null) {
|
||||
entity.setM2ModelEndDttm(request.getModelEndDttm());
|
||||
}
|
||||
}
|
||||
case "M3" -> {
|
||||
if (request.getBatchId() != null) {
|
||||
entity.setM3ModelBatchId(request.getBatchId());
|
||||
}
|
||||
|
||||
if (request.getModelStartDttm() != null) {
|
||||
entity.setM3ModelStartDttm(request.getModelStartDttm());
|
||||
}
|
||||
|
||||
if (request.getModelEndDttm() != null) {
|
||||
entity.setM3ModelEndDttm(request.getModelEndDttm());
|
||||
}
|
||||
}
|
||||
}
|
||||
applyModelUpdate(entity, request);
|
||||
}
|
||||
|
||||
if (request.getRunningModelType() != null) {
|
||||
entity.setRunningModelType(request.getRunningModelType());
|
||||
}
|
||||
|
||||
if (request.getInferStartDttm() != null) {
|
||||
entity.setInferStartDttm(request.getInferStartDttm());
|
||||
}
|
||||
|
||||
if (request.getInferEndDttm() != null) {
|
||||
entity.setInferEndDttm(request.getInferEndDttm());
|
||||
}
|
||||
|
||||
if (request.getModelComparePath() != null) {
|
||||
entity.setModelComparePath(request.getModelComparePath());
|
||||
}
|
||||
|
||||
if (request.getModelTargetPath() != null) {
|
||||
entity.setModelTargetPath(request.getModelTargetPath());
|
||||
}
|
||||
|
||||
if (request.getDetectEndCnt() != null) {
|
||||
entity.setDetectEndCnt(request.getDetectEndCnt());
|
||||
}
|
||||
|
||||
if (request.getStatus() != null) {
|
||||
entity.setStatus(request.getStatus());
|
||||
}
|
||||
|
||||
if (request.getUpdateUid() != null) {
|
||||
entity.setUpdatedUid(request.getUpdateUid());
|
||||
}
|
||||
// 공통 영역 업데이트
|
||||
applyIfNotNull(request.getRunningModelType(), entity::setRunningModelType);
|
||||
applyIfNotNull(request.getInferStartDttm(), entity::setInferStartDttm);
|
||||
applyIfNotNull(request.getInferEndDttm(), entity::setInferEndDttm);
|
||||
applyIfNotNull(request.getModelComparePath(), entity::setModelComparePath);
|
||||
applyIfNotNull(request.getModelTargetPath(), entity::setModelTargetPath);
|
||||
applyIfNotNull(request.getDetectEndCnt(), entity::setDetectEndCnt);
|
||||
applyIfNotNull(request.getStatus(), entity::setStatus);
|
||||
applyIfNotNull(request.getUpdateUid(), entity::setUpdatedUid);
|
||||
|
||||
entity.setUpdatedDttm(ZonedDateTime.now());
|
||||
}
|
||||
|
||||
private void applyModelUpdate(MapSheetLearnEntity entity, SaveInferenceAiDto request) {
|
||||
switch (request.getType()) {
|
||||
case "M1" ->
|
||||
applyModelFields(
|
||||
request,
|
||||
entity::setM1ModelBatchId,
|
||||
entity::setM1ModelStartDttm,
|
||||
entity::setM1ModelEndDttm,
|
||||
entity::setM1PendingJobs,
|
||||
entity::setM1RunningJobs,
|
||||
entity::setM1CompletedJobs,
|
||||
entity::setM1FailedJobs);
|
||||
case "M2" ->
|
||||
applyModelFields(
|
||||
request,
|
||||
entity::setM2ModelBatchId,
|
||||
entity::setM2ModelStartDttm,
|
||||
entity::setM2ModelEndDttm,
|
||||
entity::setM2PendingJobs,
|
||||
entity::setM2RunningJobs,
|
||||
entity::setM2CompletedJobs,
|
||||
entity::setM2FailedJobs);
|
||||
case "M3" ->
|
||||
applyModelFields(
|
||||
request,
|
||||
entity::setM3ModelBatchId,
|
||||
entity::setM3ModelStartDttm,
|
||||
entity::setM3ModelEndDttm,
|
||||
entity::setM3PendingJobs,
|
||||
entity::setM3RunningJobs,
|
||||
entity::setM3CompletedJobs,
|
||||
entity::setM3FailedJobs);
|
||||
default -> throw new IllegalArgumentException("Unknown type: " + request.getType());
|
||||
}
|
||||
}
|
||||
|
||||
private void applyModelFields(
|
||||
SaveInferenceAiDto request,
|
||||
Consumer<Long> setBatchId,
|
||||
Consumer<ZonedDateTime> setStart,
|
||||
Consumer<ZonedDateTime> setEnd,
|
||||
Consumer<Integer> setPending,
|
||||
Consumer<Integer> setRunning,
|
||||
Consumer<Integer> setCompleted,
|
||||
Consumer<Integer> setFailed) {
|
||||
applyIfNotNull(request.getBatchId(), setBatchId);
|
||||
applyIfNotNull(request.getModelStartDttm(), setStart);
|
||||
applyIfNotNull(request.getModelEndDttm(), setEnd);
|
||||
applyIfNotNull(request.getPendingJobs(), setPending);
|
||||
applyIfNotNull(request.getRunningJobs(), setRunning);
|
||||
applyIfNotNull(request.getCompletedJobs(), setCompleted);
|
||||
applyIfNotNull(request.getFailedJobs(), setFailed);
|
||||
}
|
||||
|
||||
private <T> void applyIfNotNull(T value, Consumer<T> setter) {
|
||||
if (value != null) {
|
||||
setter.accept(value);
|
||||
}
|
||||
}
|
||||
|
||||
public List<InferenceServerStatusDto> getInferenceServerStatusList() {
|
||||
return mapSheetLearnRepository.getInferenceServerStatusList();
|
||||
}
|
||||
@@ -346,7 +351,14 @@ public class InferenceResultCoreService {
|
||||
return inferenceBatchSheet;
|
||||
}
|
||||
|
||||
public InferenceProgressDto getInferenceAiResultById(Long id, String type, UUID modelUuid) {
|
||||
/**
|
||||
* 추론 실행 api 파라미터 조회
|
||||
*
|
||||
* @param id
|
||||
* @param modelUuid
|
||||
* @return
|
||||
*/
|
||||
public InferenceProgressDto getInferenceAiResultById(Long id, UUID modelUuid) {
|
||||
return mapSheetLearnRepository.getInferenceAiResultById(id, modelUuid);
|
||||
}
|
||||
|
||||
|
||||
@@ -11,7 +11,6 @@ import com.kamco.cd.kamcoback.inference.dto.InferenceProgressDto;
|
||||
import com.kamco.cd.kamcoback.inference.dto.InferenceResultDto.SaveInferenceAiDto;
|
||||
import com.kamco.cd.kamcoback.inference.dto.InferenceResultDto.Status;
|
||||
import com.kamco.cd.kamcoback.inference.dto.InferenceSendDto;
|
||||
import com.kamco.cd.kamcoback.inference.dto.InferenceSendDto.pred_requests_areas;
|
||||
import com.kamco.cd.kamcoback.postgres.core.InferenceResultCoreService;
|
||||
import com.kamco.cd.kamcoback.scheduler.dto.JobStatusDto;
|
||||
import jakarta.transaction.Transactional;
|
||||
@@ -52,113 +51,226 @@ public class MapSheetInferenceJobService {
|
||||
@Scheduled(fixedDelay = 60_000)
|
||||
@Transactional
|
||||
public void runBatch() {
|
||||
|
||||
if ("local".equalsIgnoreCase(profile)) {
|
||||
if (isLocalProfile()) {
|
||||
return;
|
||||
}
|
||||
|
||||
try {
|
||||
InferenceBatchSheet batchSheet =
|
||||
inferenceResultCoreService.getInferenceResultByStatus(Status.IN_PROGRESS.getId());
|
||||
|
||||
if (batchSheet == null) {
|
||||
// 진행중 배치 조회
|
||||
InferenceBatchSheet sheet = findInProgressSheet();
|
||||
if (sheet == null) {
|
||||
return;
|
||||
}
|
||||
|
||||
HttpHeaders headers = new HttpHeaders();
|
||||
headers.setContentType(MediaType.APPLICATION_JSON);
|
||||
headers.setAccept(List.of(MediaType.APPLICATION_JSON));
|
||||
|
||||
Long batchId = 0L;
|
||||
|
||||
if (batchSheet.getM3BatchId() != null) {
|
||||
batchId = batchSheet.getM3BatchId();
|
||||
} else if (batchSheet.getM2BatchId() != null) {
|
||||
batchId = batchSheet.getM2BatchId();
|
||||
} else if (batchSheet.getM1BatchId() != null) {
|
||||
batchId = batchSheet.getM1BatchId();
|
||||
}
|
||||
|
||||
if (batchId == 0L) {
|
||||
// 배치 아이디 가져오기
|
||||
Long batchId = resolveBatchId(sheet);
|
||||
if (batchId == null || batchId == 0L) {
|
||||
return;
|
||||
}
|
||||
|
||||
String url = batchUrl + "/" + batchId;
|
||||
|
||||
ExternalCallResult<String> result =
|
||||
externalHttpClient.call(url, HttpMethod.GET, null, headers, String.class);
|
||||
|
||||
int status = result.statusCode();
|
||||
if (status < 200 || status >= 300) {
|
||||
// 추론실행 상태 정보 가져오기
|
||||
JobStatusDto job = fetchJobStatus(batchId);
|
||||
if (job == null) {
|
||||
return;
|
||||
}
|
||||
|
||||
String json = result.body();
|
||||
JobStatusDto dto = objectMapper.readValue(json, JobStatusDto.class);
|
||||
|
||||
int totalJobs = dto.getTotalJobs();
|
||||
int completedJobs = dto.getCompletedJobs();
|
||||
int failedJobs = dto.getFailedJobs();
|
||||
|
||||
// 성공, 실패 값 더해서 total 과 같으면 완료
|
||||
String inferStatus = setStatus(totalJobs, completedJobs, failedJobs);
|
||||
|
||||
if ("COMPLETED".equals(inferStatus)) {
|
||||
String type = batchSheet.getRunningModelType();
|
||||
|
||||
if (type.equals("M1")) {
|
||||
// M1 완료되었으면 M2 실행
|
||||
startInference(
|
||||
batchSheet.getId(), batchSheet.getUuid(), "M2", batchSheet.getM2ModelUuid());
|
||||
// 종료시간
|
||||
updateProcessingEndTimeByModel(batchSheet.getUuid(), ZonedDateTime.now(), "M1");
|
||||
} else if (type.equals("M2")) {
|
||||
// M2 완료되었으면 M3 실행
|
||||
startInference(
|
||||
batchSheet.getId(), batchSheet.getUuid(), "M3", batchSheet.getM3ModelUuid());
|
||||
// 종료시간
|
||||
updateProcessingEndTimeByModel(batchSheet.getUuid(), ZonedDateTime.now(), "M2");
|
||||
} else if (type.equals("M3")) {
|
||||
// 완료
|
||||
SaveInferenceAiDto saveInferenceAiDto = new SaveInferenceAiDto();
|
||||
saveInferenceAiDto.setUuid(batchSheet.getUuid());
|
||||
saveInferenceAiDto.setStatus(Status.END.getId());
|
||||
saveInferenceAiDto.setInferEndDttm(ZonedDateTime.now());
|
||||
saveInferenceAiDto.setType(type);
|
||||
inferenceResultCoreService.update(saveInferenceAiDto);
|
||||
// 종료시간
|
||||
updateProcessingEndTimeByModel(batchSheet.getUuid(), ZonedDateTime.now(), "M3");
|
||||
}
|
||||
if (isCompleted(job)) {
|
||||
// 완료 처리
|
||||
onCompleted(sheet, job);
|
||||
} else {
|
||||
SaveInferenceAiDto saveInferenceAiDto = new SaveInferenceAiDto();
|
||||
saveInferenceAiDto.setUuid(batchSheet.getUuid());
|
||||
saveInferenceAiDto.setStatus(Status.IN_PROGRESS.getId());
|
||||
saveInferenceAiDto.setDetectEndCnt((long) (completedJobs + failedJobs));
|
||||
inferenceResultCoreService.update(saveInferenceAiDto);
|
||||
// 진행중 처리
|
||||
onProcessing(sheet, job);
|
||||
}
|
||||
|
||||
} catch (JsonProcessingException e) {
|
||||
Thread.currentThread().interrupt();
|
||||
log.error("배치 중 인터럽트 발생", e);
|
||||
// JSON 파싱 오류는 interrupt 대상 아님
|
||||
log.error("배치 중 JSON 파싱 오류", e);
|
||||
} catch (Exception e) {
|
||||
log.error("배치 처리 중 예외", e);
|
||||
}
|
||||
}
|
||||
|
||||
private void startInference(Long id, UUID uuid, String type, UUID modelUuid) {
|
||||
/**
|
||||
* 진행중 배치 조회
|
||||
*
|
||||
* @return
|
||||
*/
|
||||
private InferenceBatchSheet findInProgressSheet() {
|
||||
return inferenceResultCoreService.getInferenceResultByStatus(Status.IN_PROGRESS.getId());
|
||||
}
|
||||
|
||||
InferenceProgressDto progressDto =
|
||||
inferenceResultCoreService.getInferenceAiResultById(id, type, modelUuid);
|
||||
/**
|
||||
* batchId 결정
|
||||
*
|
||||
* @param sheet
|
||||
* @return
|
||||
*/
|
||||
private Long resolveBatchId(InferenceBatchSheet sheet) {
|
||||
// M3 > M2 > M1
|
||||
if (sheet.getM3BatchId() != null) {
|
||||
return sheet.getM3BatchId();
|
||||
}
|
||||
if (sheet.getM2BatchId() != null) {
|
||||
return sheet.getM2BatchId();
|
||||
}
|
||||
if (sheet.getM1BatchId() != null) {
|
||||
return sheet.getM1BatchId();
|
||||
}
|
||||
return 0L;
|
||||
}
|
||||
|
||||
String inferenceType = "";
|
||||
/**
|
||||
* 추론실행 상태 정보 가져오기
|
||||
*
|
||||
* @param batchId
|
||||
* @return
|
||||
* @throws JsonProcessingException
|
||||
*/
|
||||
private JobStatusDto fetchJobStatus(Long batchId) throws JsonProcessingException {
|
||||
String url = batchUrl + "/" + batchId;
|
||||
|
||||
if (type.equals("M1")) {
|
||||
inferenceType = "G1";
|
||||
} else if (type.equals("M2")) {
|
||||
inferenceType = "G2";
|
||||
} else if (type.equals("M3")) {
|
||||
inferenceType = "G3";
|
||||
ExternalCallResult<String> result =
|
||||
externalHttpClient.call(url, HttpMethod.GET, null, jsonHeaders(), String.class);
|
||||
|
||||
int status = result.statusCode();
|
||||
if (status < 200 || status >= 300) {
|
||||
return null;
|
||||
}
|
||||
|
||||
pred_requests_areas predRequestsAreas = new pred_requests_areas();
|
||||
return objectMapper.readValue(result.body(), JobStatusDto.class);
|
||||
}
|
||||
|
||||
private HttpHeaders jsonHeaders() {
|
||||
HttpHeaders headers = new HttpHeaders();
|
||||
headers.setContentType(MediaType.APPLICATION_JSON);
|
||||
headers.setAccept(List.of(MediaType.APPLICATION_JSON));
|
||||
return headers;
|
||||
}
|
||||
|
||||
/**
|
||||
* 완료 판단
|
||||
*
|
||||
* @param dto
|
||||
* @return
|
||||
*/
|
||||
private boolean isCompleted(JobStatusDto dto) {
|
||||
return dto.getTotalJobs() <= (dto.getCompletedJobs() + dto.getFailedJobs());
|
||||
}
|
||||
|
||||
/**
|
||||
* 완료 처리
|
||||
*
|
||||
* @param sheet
|
||||
* @param job
|
||||
*/
|
||||
private void onCompleted(InferenceBatchSheet sheet, JobStatusDto job) {
|
||||
String currentType = sheet.getRunningModelType();
|
||||
ZonedDateTime now = ZonedDateTime.now();
|
||||
|
||||
// 현재 모델 종료 업데이트
|
||||
updateProcessingEndTimeByModel(job, sheet.getUuid(), now, currentType);
|
||||
|
||||
// M3이면 전체 종료
|
||||
if ("M3".equals(currentType)) {
|
||||
endAll(sheet, now);
|
||||
return;
|
||||
}
|
||||
|
||||
// 다음 모델 실행 (M1->M2, M2->M3)
|
||||
String nextType = nextModelType(currentType);
|
||||
UUID nextModelUuid = resolveModelUuid(sheet, nextType);
|
||||
|
||||
// 다음 모델 추론 실행
|
||||
startInference(sheet.getId(), sheet.getUuid(), nextType, nextModelUuid);
|
||||
}
|
||||
|
||||
/**
|
||||
* 추론 종료 할때 update
|
||||
*
|
||||
* @param sheet
|
||||
* @param now
|
||||
*/
|
||||
private void endAll(InferenceBatchSheet sheet, ZonedDateTime now) {
|
||||
SaveInferenceAiDto save = new SaveInferenceAiDto();
|
||||
save.setUuid(sheet.getUuid());
|
||||
save.setStatus(Status.END.getId());
|
||||
save.setInferEndDttm(now);
|
||||
save.setType("M3"); // 마지막 모델 기준
|
||||
inferenceResultCoreService.update(save);
|
||||
}
|
||||
|
||||
/**
|
||||
* 다음 실행할 모델 타입 조회
|
||||
*
|
||||
* @param currentType
|
||||
* @return
|
||||
*/
|
||||
private String nextModelType(String currentType) {
|
||||
if ("M1".equals(currentType)) {
|
||||
return "M2";
|
||||
}
|
||||
if ("M2".equals(currentType)) {
|
||||
return "M3";
|
||||
}
|
||||
throw new IllegalArgumentException("Unknown runningModelType: " + currentType);
|
||||
}
|
||||
|
||||
/**
|
||||
* 모델 정보 UUID 가져오기
|
||||
*
|
||||
* @param sheet
|
||||
* @param type
|
||||
* @return
|
||||
*/
|
||||
private UUID resolveModelUuid(InferenceBatchSheet sheet, String type) {
|
||||
if ("M1".equals(type)) {
|
||||
return sheet.getM1ModelUuid();
|
||||
}
|
||||
if ("M2".equals(type)) {
|
||||
return sheet.getM2ModelUuid();
|
||||
}
|
||||
if ("M3".equals(type)) {
|
||||
return sheet.getM3ModelUuid();
|
||||
}
|
||||
throw new IllegalArgumentException("Unknown type: " + type);
|
||||
}
|
||||
|
||||
/**
|
||||
* 진행중 처리
|
||||
*
|
||||
* @param sheet
|
||||
* @param job
|
||||
*/
|
||||
private void onProcessing(InferenceBatchSheet sheet, JobStatusDto job) {
|
||||
SaveInferenceAiDto save = new SaveInferenceAiDto();
|
||||
save.setUuid(sheet.getUuid());
|
||||
save.setStatus(Status.IN_PROGRESS.getId());
|
||||
save.setPendingJobs(job.getPendingJobs());
|
||||
save.setRunningJobs(job.getRunningJobs());
|
||||
save.setCompletedJobs(job.getCompletedJobs());
|
||||
save.setFailedJobs(job.getFailedJobs());
|
||||
inferenceResultCoreService.update(save);
|
||||
}
|
||||
|
||||
/**
|
||||
* 다음 모델 추론 실행
|
||||
*
|
||||
* @param id
|
||||
* @param uuid
|
||||
* @param type
|
||||
* @param modelUuid
|
||||
*/
|
||||
private void startInference(Long id, UUID uuid, String type, UUID modelUuid) {
|
||||
|
||||
// 추론 실행 api 파라미터 조회
|
||||
InferenceProgressDto progressDto =
|
||||
inferenceResultCoreService.getInferenceAiResultById(id, modelUuid);
|
||||
|
||||
// ai 에 맞는 모델 명으로 변경
|
||||
String inferenceType = modelToInferenceType(type);
|
||||
|
||||
InferenceSendDto.pred_requests_areas predRequestsAreas =
|
||||
new InferenceSendDto.pred_requests_areas();
|
||||
predRequestsAreas.setInput1_year(progressDto.getPred_requests_areas().getInput1_year());
|
||||
predRequestsAreas.setInput2_year(progressDto.getPred_requests_areas().getInput2_year());
|
||||
predRequestsAreas.setInput1_scene_path(
|
||||
@@ -178,7 +290,7 @@ public class MapSheetInferenceJobService {
|
||||
m.setCd_model_type(inferenceType);
|
||||
m.setPriority(progressDto.getPriority());
|
||||
|
||||
// 추론 다음모델 실행
|
||||
// 추론 실행 api 호출
|
||||
Long batchId = ensureAccepted(m);
|
||||
|
||||
SaveInferenceAiDto saveInferenceAiDto = new SaveInferenceAiDto();
|
||||
@@ -191,71 +303,109 @@ public class MapSheetInferenceJobService {
|
||||
inferenceResultCoreService.update(saveInferenceAiDto);
|
||||
}
|
||||
|
||||
/**
|
||||
* ai 에 맞는 모델 명으로 변경
|
||||
*
|
||||
* @param type 모델 타입
|
||||
* @return String
|
||||
*/
|
||||
private String modelToInferenceType(String type) {
|
||||
if ("M1".equals(type)) {
|
||||
return "G1";
|
||||
}
|
||||
if ("M2".equals(type)) {
|
||||
return "G2";
|
||||
}
|
||||
if ("M3".equals(type)) {
|
||||
return "G3";
|
||||
}
|
||||
throw new IllegalArgumentException("Unknown type: " + type);
|
||||
}
|
||||
|
||||
/**
|
||||
* api 호출
|
||||
*
|
||||
* @param dto
|
||||
* @return
|
||||
*/
|
||||
private Long ensureAccepted(InferenceSendDto dto) {
|
||||
log.info("dto null? {}", dto == null);
|
||||
ObjectMapper om = new ObjectMapper();
|
||||
try {
|
||||
log.info("dto json={}", om.writeValueAsString(dto));
|
||||
} catch (Exception e) {
|
||||
log.error(e.getMessage());
|
||||
if (dto == null) {
|
||||
log.warn("not InferenceSendDto dto");
|
||||
throw new CustomApiException("BAD_REQUEST", HttpStatus.BAD_REQUEST);
|
||||
}
|
||||
|
||||
HttpHeaders headers = new HttpHeaders();
|
||||
headers.setContentType(MediaType.APPLICATION_JSON);
|
||||
headers.setAccept(List.of(MediaType.APPLICATION_JSON));
|
||||
// 1) 요청 로그
|
||||
try {
|
||||
log.debug("Inference request dto={}", objectMapper.writeValueAsString(dto));
|
||||
} catch (JsonProcessingException e) {
|
||||
log.warn("Failed to serialize inference dto", e);
|
||||
}
|
||||
|
||||
// TODO 추후 삭제
|
||||
// 2) local 환경 임시 처리
|
||||
if ("local".equals(profile)) {
|
||||
if (dto.getPred_requests_areas() == null) {
|
||||
dto.setPred_requests_areas(new InferenceSendDto.pred_requests_areas());
|
||||
throw new IllegalStateException("pred_requests_areas is null");
|
||||
}
|
||||
|
||||
dto.getPred_requests_areas().setInput1_scene_path("/kamco-nfs/requests/2023_local.geojson");
|
||||
dto.getPred_requests_areas().setInput2_scene_path("/kamco-nfs/requests/2024_local.geojson");
|
||||
}
|
||||
|
||||
// 3) HTTP 호출
|
||||
HttpHeaders headers = new HttpHeaders();
|
||||
headers.setContentType(MediaType.APPLICATION_JSON);
|
||||
headers.setAccept(List.of(MediaType.APPLICATION_JSON));
|
||||
|
||||
ExternalCallResult<String> result =
|
||||
externalHttpClient.call(inferenceUrl, HttpMethod.POST, dto, headers, String.class);
|
||||
|
||||
int status = result.statusCode();
|
||||
String body = result.body();
|
||||
|
||||
if (status < 200 || status >= 300) {
|
||||
if (result.statusCode() < 200 || result.statusCode() >= 300) {
|
||||
log.error("Inference API failed. status={}, body={}", result.statusCode(), result.body());
|
||||
throw new CustomApiException("BAD_GATEWAY", HttpStatus.BAD_GATEWAY);
|
||||
}
|
||||
|
||||
Long batchId = 0L;
|
||||
|
||||
// 4) 응답 파싱
|
||||
try {
|
||||
List<Map<String, Object>> list =
|
||||
om.readValue(body, new TypeReference<List<Map<String, Object>>>() {});
|
||||
objectMapper.readValue(result.body(), new TypeReference<>() {});
|
||||
|
||||
Integer batchIdInt = (Integer) list.get(0).get("batch_id");
|
||||
batchId = batchIdInt.longValue();
|
||||
if (list.isEmpty()) {
|
||||
throw new IllegalStateException("Inference response is empty");
|
||||
}
|
||||
|
||||
} catch (Exception e) {
|
||||
log.error(e.getMessage());
|
||||
}
|
||||
Object batchIdObj = list.get(0).get("batch_id");
|
||||
if (batchIdObj == null) {
|
||||
throw new IllegalStateException("batch_id not found in response");
|
||||
}
|
||||
|
||||
return batchId;
|
||||
return Long.valueOf(batchIdObj.toString());
|
||||
|
||||
} catch (Exception e) {
|
||||
log.error("Failed to parse inference response. body={}", result.body(), e);
|
||||
throw new CustomApiException("INVALID_INFERENCE_RESPONSE", HttpStatus.BAD_GATEWAY);
|
||||
}
|
||||
}
|
||||
|
||||
private void updateProcessingEndTimeByModel(UUID uuid, ZonedDateTime dateTime, String type) {
|
||||
/**
|
||||
* 실행중인 profile
|
||||
*
|
||||
* @return
|
||||
*/
|
||||
private boolean isLocalProfile() {
|
||||
return "local".equalsIgnoreCase(profile);
|
||||
}
|
||||
|
||||
/** 모델별 추론 종료 update */
|
||||
private void updateProcessingEndTimeByModel(
|
||||
JobStatusDto dto, UUID uuid, ZonedDateTime dateTime, String type) {
|
||||
SaveInferenceAiDto saveInferenceAiDto = new SaveInferenceAiDto();
|
||||
saveInferenceAiDto.setUuid(uuid);
|
||||
saveInferenceAiDto.setUpdateUid(0L);
|
||||
saveInferenceAiDto.setModelEndDttm(dateTime);
|
||||
saveInferenceAiDto.setType(type);
|
||||
saveInferenceAiDto.setPendingJobs(dto.getPendingJobs());
|
||||
saveInferenceAiDto.setRunningJobs(dto.getRunningJobs());
|
||||
saveInferenceAiDto.setCompletedJobs(dto.getCompletedJobs());
|
||||
saveInferenceAiDto.setFailedJobs(dto.getFailedJobs());
|
||||
inferenceResultCoreService.update(saveInferenceAiDto);
|
||||
}
|
||||
|
||||
private String setStatus(int totalJobs, int completedJobs, int failedJobs) {
|
||||
if (totalJobs <= (completedJobs + failedJobs)) {
|
||||
return "COMPLETED";
|
||||
}
|
||||
return "PROCESSING";
|
||||
}
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user